
11/20/2007

1

eXtensible Markup Language

CS 368 — Web Programming — Ben Liblit

Meet our Cast of Characters

 XML: eXtensible Markup Language

 Can add lightweight semantic info to plain text

 Can describe arbitrarily complex structured data

 Just data; doesn’t really do anything by itself

 DTD: Document Type Definition

 Structure of some XML format you plan to reuse

 One DTD ↔ many XML documents

 Just like HTML syntax ↔ many HTML pages

2

Meet our Cast of Characters

 XPath

 Compact syntax for grabbing fragments of XML data

 XSLT: eXtensible Stylesheet Language Transformations

 Programming language for transforming XML

 It does stuff!

 Arbitrary calculations, logic, conditional branches, etc.

 Uses XPath extensively

3

11/20/2007

2

Markup Languages

 Give structure and

meaning to plain text

 Lightweight overlay

 Erase and you’re back to

plain text

 Markup “vocabulary”

agreed-upon by users

 Writer & editor

 Web designer & browser

4

Markup Languages

 Give structure and

meaning to plain text

 Lightweight overlay

 Erase and you’re back to

plain text

 Markup “vocabulary”

agreed-upon by users

 Writer & editor

 Web designer & browser

Building a Better NetFlow
appeared in SIGCOMM



<cite>Building a Better
NetFlow</cite> appeared in
SIGCOMM



Building a Better NetFlow

appeared in SIGCOMM

5

Creating Your Own Markup Language

 HTML is one markup language

 Pretty good for describing web pages

 Vocabulary includes links, headings, paragraphs, images, etc.

 But what if that’s not the information you’re interested in?

 Mark ingredients in recipes so I can use up all of my basil

 Mark prices in catalogs so I can find a good deal

 Mark characters in a play so I know who needs to be on stage

 Mark dictionary words by rarity so I can build shorter editions

 Make up your own markup vocabulary!

 Apply whatever meaning you want, as long as everyone agrees

 XML: a generic syntax for custom markup languages

6

http://www.sigcomm.org/

11/20/2007

3

XML: Consistent Generic Syntax

 Elements (a.k.a. tags) in angle brackets

 <ingredient>basil</ingredient>

 Elements have optional attributes

 <word level="rare">…</word>

 No duplicate attribute names allowed!

 Abbreviated syntax for empty elements

 <sale reduction="10%"></sale>

 <sale reduction="10%" />

 (Optional space before closing slash has no meaning)

 Make up any element and tag names you want!

 Will this lead to complete chaos? Maybe, but DTDs will help…

7

XML: Consistent Generic Syntax

 Some special characters represented as escaped entities

 “<” and “>” become “<” and “>”

 “&” becomes “&”

 “” can optionally become “☺” or “&x263A;”

 Elements must be strictly nested and explicitly closed

 Think {of (elements) [(as)] nested, {matching} parentheses}

 Which of the following are well-formed XML?

1. <p>plain bold <i>bold italic plain? italic?</p>

2. <p>plain bold <i>bold italic</i> just bold again</p>

3. <p>plain bold <i>bold italic</i> <i>just italic</i></p>

 Exactly one top-level root element

8

XML: Consistent Generic Interpretation

 XML document is … a tree!

 Strict nesting determines parent/child relationships

 Elements are nodes

 Elements may have zero or more ordered children

 Runs of original text become leaf nodes

 Cannot have any children

 Attributes are extra info on elements

 Collection of (name: value) pairs

 Unordered, unlike child nodes

 No extra parsing or interpretation of attribute values

9

11/20/2007

4

XML: Consistent Generic Interpretation

<play

author=“Shakespeare">

<title>Julius Cæsar</title>

<act setting=“hall">

<line who="Brutus">

Hark!

</line>

<exit who="Brutus"/>

</act>

</play>

play

title

Julius Cæsar

act

line

Hark!

exeunt

(Slight fib: I have omitted

whitespace-only text

nodes, as is common.)

10

XML Beyond Text Markup

<recipe>

<ingredient id= "ingr_01"
count= "3" units="leaves">

Basil

</ingredient>

…

<instructions>

<mix>

<item ref=“ingr_01“ />

<item ref=“ingr_02“ />

</mix>

…

</recipe>

 Remember that idea

about erasing the markup

to recover plain text?

 What if we discard this?

 Use XML as a syntax for

any tree-structured data

 Or even non-tree data,

though a bit awkward

 Very popular data format

 Especially for web stuff

11

Total Markup Anarchy?

 You can make up any elements and attributes you want

 Can any element appear anywhere?

 Can any attribute appear on any element, with any value?

 Yes and no

 How carefully do you want to check your XML document?

 Well-formed XML

 Requires only proper syntax, nesting, entity escaping, etc.

 Sufficient to ensure you can construct an unambiguous tree

 Validated XML

 Document tree obeys extra rules about what appears where

 Rules provided by designer of markup vocabulary (e.g., you!)

12

11/20/2007

5

DTD: Document Type Definition

 Gives the general format of a family of XML documents

 What are the known element names?

 Which attributes can each element have?

 And what are the possible values?

 What children can each element have?

 And how many?

 And what order can they appear in?

 Validating XML parser checks tree against DTD

 Non-validating parser only checks for well-formed XML

 Cannot even try to validate a non-well-formed XML document

 Many parsers offer both validating and non-validating modes

13

Simplified Fragment of HTML DTD

<!ELEMENT html (head, body)>

<!ELEMENT body (h1 | h2 | h3 | p | table | ul | hr)*>

<!ELEMENT p (#PCDATA | a | img)*>

<!ATTLIST p style CDATA #IMPLIED>

<!ELEMENT img EMPTY>

<!ATTLIST img src CDATA #REQUIRED>

<!ELEMENT table (caption?, thead?, tfoot?, (tbody+ | tr+))>

14

DTD Element Properties

 Ordering of child nodes, if any are allowed

 Specific order: foo, bar, baz

 Mixed in any order: foo | bar | baz

 How many repetitions?

 Zero or one: foo?

 Zero or more: bar*

 One or more: baz+

 Special kinds of content: EMPTY, #PCDATA

 Marking up a Shakespearean play

 <!ELEMENT play (title, prologue?, act+, epilogue?)>

 <!ELEMENT act (line | enter | exit)+>

15

11/20/2007

6

DTD Attribute Properties

 Each element has a list of allowed attributes

 <!ATTLIST line

who IDREF #REQUIRED

mood (happy | sad | neutral) #IMPLIED>

 Each attribute has name, type, and default value

 Types include CDATA, NMTOKEN, ID, IDREF, enum, …

 Pretty limited, actually; cannot even require a valid number

 Default value

 value

 #REQUIRED

 #IMPLIED

 #FIXED value

16

OK, I built my XML tree. Now what?

 A data definition language

is only useful if you can

get data back out of it

 Use tree paths to describe

the data you want

 /play

 /play/title

 /play/act/line

 (Which line?)

 Welcome to XPath!

play

title

Julius Cæsar

act

line

Hark!

exeunt

17

XPath: XML Data Extraction Patterns

 Paths are slash-delimited, each level naming an element

 /play/title

 /html/body/table/tr/td

 tr/td/p

 ../act/enter

 Wildcards

 * matches any one node: /play/*/line

 // matches zero or more nodes: /html/body//table//a/*/img

 Attributes available at the leaves using @name

 /recipe/ingredient/@units

 //@lang

18

11/20/2007

7

Being More Selective

 If pattern matches multiple parts of tree, get all of them

 /play/act/line: every line in every act, in document order

 But what if you only want some of them?

 Restrictions in square brackets anywhere along the path

 /play/act/line[@who = "Brutus"]

 XPath functions give more info about current node

 /play/act[position() = 2]/line[text() = "Hark!"]/@who

 Special syntax simplifies some common cases

 Number is treated as position check: /play/act[3]/line[last()]

 Node set matches if non-empty: /play[epilogue]/title

19

XPath Can Get Pretty Fancy

 Text of the last line in the play

 /play//line[not preceding::line]/text()

 Schools that the Badgers played against

 /scores/game[team = "Badgers"]/team[. != "Badgers"]

 Extract TV listing from HTML page (screen-scraping)

 //div[@class = "times"]//dt[text() = "Scrubs"]/../ul/li[2]

 However, it’s still just a one-time query

 Good start, but not enough for complex data transformations

20

XSLT: XML Transformation Language

 XSLT is a fully general programming language

 Highly specialized for transforming XML into XML

 Why would you want to do this?

 To generate HTML pages from other structured data

 To convert data in one structured format into another format

 To extract data using more powerful tools than XPath

 So why did we bother with XPath?

 XSLT uses XPath extensively to match and extract data

 Think of XSLT as an XPath-based XML reorganizer

21

11/20/2007

8

General Style of an XSLT Script

 XSLT script is a collection of templates

 Each template has an XPath pattern + commands to run

 Use XPath pattern to match fragments of XML document tree

 When a template matches, run the commands

 If no match, default behavior kicks in

1. Default for text nodes: copy text to result tree

2. Default for element nodes: recursively descend

 Start by matching document root, “/”

 Might match an XSLT template, or might recursively descend

22

Warning! Amazingly ugly syntax ahead!

 What syntax should XSLT programming language use?

 Curly braces and semicolons like Java, C, C++, C#, JavaScript?

 Nested parentheses like Lisp?

 Whitespace-delimited commands like Unix shells?

 Of course not. Don’t be silly. 

 XSLT programs are structured, and we already have a

perfectly good (?) syntax for structured data

 XSLT is represented using … XML!

 <xsl:if test="…">…</xsl:if>

 <xsl:for-each select="…">…</xsl:for-each>

 <xsl:variable name="inches" select="@cm / 2.54" />

23

Partial XSLT Play-to-HTML Converter

<xsl:template match="act">

<h1>Act <xsl:value-of select="position()"></h1>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="line">

<p>

<xsl:value-of select="@who"/>:

<xsl:apply-templates/>

</p>

</xsl:template>

24

11/20/2007

9

Partial XSLT Play-to-HTML Converter

<xsl:template match="exit">

<xsl:variable name=“gone" select="@who" />

<p>Exit <xsl:value-of select="$gone"/>.</p>

<xsl:if test="not following::enter[@who = $gone]">

<p class="stage-direction">

<xsl:value-of select="$gone" />

may now leave the theatre.

</p>

</xsl:if>

</xsl:template>

25

If going to HTML, what was the point?

 Move between XML vocabularies (not just HTML)

 Data exchange, conversion, mining, migration, etc.

 Rehearsal plans

 Get list of unique characters appearing in each act

 Cross-reference with names of actors for each role

 Convert to OOXML or ODF (XML for word processing)

 Print “call sheet” saying who needs to be at rehearsal

 Cookbook of just basil recipes

 “Too Many Tomatoes: A Cookbook for When Your Garden

Explodes”

 Rewrite badly-designed web sites within the browser?

26

Why I’m Doing This Lecture

 My Curriculum Vitae is an XML document

 Automatically convert to HTML, PDF (via LaTeX), plain text

 Automatically extract conflict-of-interest lists: everyone I’ve

written a paper with in the last five years

 My class schedules are XML documents

 Generate meeting dates automatically

 Generate HTML table for posting on class web page

 Automatically extract calendar records for Google Calendar

 Much of my research data is stored as XML

 XSLT transformations to HTML for rapid prototyping of

alternative ways to explore our results

27

11/20/2007

10

Buyer Beware: Some XML Caveats

 Syntax can be very verbose

 <date><year>2007</year><month>11</month><date>20…

 Lisp-like alternative: (date (year 2007) (month 11) (date 20))

 Too much design flexibility and little standardized policy

 <date><year>2007</year><month>11</month><date>20…

 <date>2007-11-20</date>

 <date when="2007-11-20"/>

 Human-readable?

 In theory, yes

 In practice, sometimes not

28

Buyer Beware: Some XML Caveats

 Doesn’t work too well for arbitrary binary data

 Need to encode using allowed subset of chars

 <data base64="iVBORw0KGgoAAANSUhEUgAAAJAAA…"/>

 DTDs have limited expressive power, quirky syntax

 Might need to allow “valid” documents you don’t really like

 Popular alternatives: W3C Schema, RELAX NG

 XPath cannot do absolutely everything

 XQuery: SQL for XML

 Use XPath within more full-featured programming languages

 XSLT: worst programming syntax ever invented

 Call it selectively from within standard programming languages

29

Summary of What We’ve Seen

 XML: generic syntax for tree-structured data

 Well-formed XML must obey some simple rules

 DTD: define grammars for particular ways of using XML

 Valid (or validated) XML documents obey some given DTD

 Properly authored HTML is XML and obeys the HTML DTD

 XPath: data extraction based on path matching

 Compact and usually easy to read

 Limited expressive power; cannot solve every problem

 XSLT: domain-specific language for XML transformation

 Systematically match input tree and generate output tree

 Very powerful tool if your task fits its model

30

