11/20/2007

eXtensible Markup Language

CS 368 — Web Programming — Ben Liblit

Meet our Cast of Characters

» XML:eXtensible Markup Language
Can add lightweight semantic info to plain text
Can describe arbitrarily complex structured data
Just data; doesn’t really do anything by itself

» DTD:DocumentType Definition
Structure of some XML format you plan to reuse
One DTD < many XML documents
Just like HTML syntax <> many HTML pages

Meet our Cast of Characters

» XPath
Compact syntax for grabbing fragments of XML data
» XSLT:eXtensible Stylesheet Language Transformations
Programming language for transforming XML
It does stuff!
Arbitrary calculations, logic, conditional branches, etc.
Uses XPath extensively

Markup Languages

» Give structure and
meaning to plain text
» Lightweight overlay

Erase and you're back to
plain text

» Markup “vocabulary”
agreed-upon by users
Writer & editor
Web designer & browser

Markup Languages

» Give structure and
meaning to plain text
» Lightweight overlay

Erase and you're back to
plain text

» Markup “vocabulary”
agreed-upon by users
Writer & editor
Web designer & browser

Bold type: use @ wm
\alics: use @ Sin le underiine.

Centered copy:Juse prackets.|

Tabs: enter 2 vertical line
/ before the entry-
New paragraph: use pYor @

£ underline
Caps: use %’.

11/20/2007

Building a Better NetFlow
appeared in SIGCOMM

¢

<cite>Building a Better
NetFlow</cite> appeared in
SIGCOMM

g

Building a Better NetFlow
appeared in

Creating Your Own Markup Language

» HTML is one markup language
Pretty good for describing web pages

Vocabulary includes links, headings, paragraphs, images, etc.

» But what if that’s not the information you're interested in?

Mark ingredients in recipes so | can use up all of my basil

Mark prices in catalogs so | can find a good deal

Mark characters in a play so | know who needs to be on stage

Mark dictionary words by rarity so | can build shorter editions

» Make up your own markup vocabulary!

Apply whatever meaning you want, as long as everyone agrees

» XML:a generic syntax for custom markup languages

6

http://www.sigcomm.org/

XML: Consistent Generic Syntax

» Elements (a.k.a. tags) in angle brackets
<ingredient>basil</ingredient>
» Elements have optional attributes
<word level="rare">...</word>
No duplicate attribute names allowed!
» Abbreviated syntax for empty elements
<sale reduction="10%"></sale>
<sale reduction="10%" />
(Optional space before closing slash has no meaning)

» Make up any element and tag names you want!

Will this lead to complete chaos? Maybe, but DTDs will help...

XML: Consistent Generic Syntax

» Some special characters represented as escaped entities

“<” and *>” become “<” and “>”
“&” becomes “&”
“©” can optionally become “☺” or “&x263A;”

» Elements must be strictly nested and explicitly closed
Think {of (elements) [(as)] nested, {matching} parentheses}
Which of the following are well-formed XML?

<p>plain bold <i>bold italic plain? italic’</p>
<p>plain bold <i>bold italic</i> just bold again</p>
<p>plain bold <i>bold italic</i> <i>just italic</i></p>

» Exactly one top-level root element

XML: Consistent Generic Interpretation

» XML document is ... a tree!
Strict nesting determines parent/child relationships
Elements are nodes
Elements may have zero or more ordered children
Runs of original text become leaf nodes
Cannot have any children
» Attributes are extra info on elements
Collection of (name: value) pairs
Unordered, unlike child nodes

No extra parsing or interpretation of attribute values

11/20/2007

XML: Consistent Generic Interpretation

<play
— "
author="Shakespeare"> e
<title>Julius Caesar</title> T
<act setting="hall"> title act
<line who="Brutus"> T T
</|Ha">k! Julius Caesar line exeunt
ine
<exit who="Brutus"/>
|
<Jact> Hark!
(Slight fib: 1 have omitted
</P|a)’> whitespace-only text
nodes, as is common.)
10
XML Beyond Text Markup
» Remember that idea <recipe>

about erasing the markup
to recover plain text?
What if we discard this?

» Use XML as a syntax for
any tree-structured data
Or even non-tree data,
though a bit awkward
» Very popular data format
Especially for web stuff

11/20/2007

<ingredient id= "ingr_01"
count= "3" units="leaves">
Basil

</ingredient>

<instructions>
<mix>
<item ref="ingr_01*“/>
<item ref="ingr_02"/>
</mix>

</recipe>

Total Markup Anarchy?

» You can make up any elements and attributes you want
Can any element appear anywhere?

Can any attribute appear on any element, with any value?

» Yes and no

How carefully do you want to check your XML document?

» Well-formed XML

Requires only proper syntax, nesting, entity escaping, etc.

Sufficient to ensure you can construct an unambiguous tree

» Validated XML

Document tree obeys extra rules about what appears where

Rules provided by designer of markup vocabulary (e.g., you!)

DTD: Document Type Definition

» Gives the general format of a family of XML documents
What are the known element names?
Which attributes can each element have?
And what are the possible values?

What children can each element have?
And how many?
And what order can they appear in?

» Validating XML parser checks tree against DTD
Non-validating parser only checks for well-formed XML
Cannot even try to validate a non-well-formed XML document
Many parsers offer both validating and non-validating modes

Simplified Fragment of HTML DTD
<IELEMENT html (head, body)>

<IELEMENT body (h| | h2 | h3 | p | table | ul | hry*>

<IELEMENT p (#PCDATA | a | img)*>
<IATTLIST p style CDATA #IMPLIED>

<!ELEMENT img EMPTY>
<!ATTLIST img src CDATA #REQUIRED>

<!ELEMENT table (caption?, thead?, tfoot, (tbody+ | tr+))>

DTD Element Properties

» Ordering of child nodes, if any are allowed
Specific order: foo, bar, baz
Mixed in any order: foo | bar | baz
» How many repetitions?
Zero or one: foo?
Zero or more: bar*
One or more: baz+
» Special kinds of content: EMPTY, #PCDATA
» Marking up a Shakespearean play
<!ELEMENT play (title, prologue?, act+, epilogue?)>
<!ELEMENT act (line | enter | exit)+>

11/20/2007

11/20/2007

DTD Attribute Properties

» Each element has a list of allowed attributes
<IATTLIST line
who IDREF #REQUIRED
mood (happy | sad | neutral) #IMPLIED>
» Each attribute has name, type, and default value
Types include CDATA, NMTOKEN, ID, IDREF, enum, ...

Pretty limited, actually; cannot even require a valid number

Default value
value
#REQUIRED
#IMPLIED
#FIXED value

OK, I built my XML tree. Now what?

» A data definition language
is only useful if you can
get data back out of it

» Use tree paths to describe T

the data you want o F
Iplay | T
Iplay/title Julius Caesar line exeunt
Iplay/act/line
(Which line?) Hark!

» Welcome to XPath!

XPath: XML Data Extraction Patterns

» Paths are slash-delimited, each level naming an element
Iplay/title
/html/body/table/tr/td
tr/td/p
.Jact/enter
» Wildcards
* matches any one node: /play/*/line
/I matches zero or more nodes: /html/body//table//a/*/img
» Attributes available at the leaves using @name
Irecipe/ingredient/ @units
/l@lang

Being More Selective

» If pattern matches multiple parts of tree, get all of them
Iplay/act/line: every line in every act, in document order
But what if you only want some of them?

» Restrictions in square brackets anywhere along the path
Iplay/act/line[@who = "Brutus"]

» XPath functions give more info about current node
Iplay/act[position() = 2]/line[text() = "Hark!"]/@who

» Special syntax simplifies some common cases
Number is treated as position check: /play/act[3]/line[last()]
Node set matches if non-empty: /play[epilogue]/title

XPath Can Get Pretty Fancy

» Text of the last line in the play
Iplay//line[not preceding:line]/text()

» Schools that the Badgers played against
/scores/game[team = "Badgers"]/team[. != "Badgers"]

» ExtractTV listing from HTML page (screen-scraping)
/ldiv[@class = "times"]//dt[text() = "Scrubs"]/../ul/li[2]

» However, it’s still just a one-time query

Good start, but not enough for complex data transformations

20

XSLT: XML Transformation Language

» XSLT is a fully general programming language
Highly specialized for transforming XML into XML
» Why would you want to do this?
To generate HTML pages from other structured data
To convert data in one structured format into another format
To extract data using more powerful tools than XPath
» So why did we bother with XPath?
XSLT uses XPath extensively to match and extract data
Think of XSLT as an XPath-based XML reorganizer

21

11/20/2007

General Style of an XSLT Script

» XSLT script is a collection of templates
Each template has an XPath pattern + commands to run
Use XPath pattern to match fragments of XML document tree
When a template matches, run the commands
» If no match, default behavior kicks in
Default for text nodes: copy text to result tree
Default for element nodes: recursively descend
» Start by matching document root,"/”
Might match an XSLT template, or might recursively descend

22

Warning! Amazingly ugly syntax ahead!

» What syntax should XSLT programming language use?
Curly braces and semicolons like Java, C, C++, C#, JavaScript?
Nested parentheses like Lisp?

Whitespace-delimited commands like Unix shells?
» Of course not. Don’t be silly. ©
» XSLT programs are structured,and we already have a
perfectly good (?) syntax for structured data
XSLT is represented using ... XML!
<xslif test="...">...</xsl:if>
<xsl:for-each select="...">...</xsl:for-each>

<xsl:variable name="inches" select="@cm / 2.54" />

23

Partial XSLT Play-to-HTML Converter

<xsl:template match="act">
<hl>Act <xsl:value-of select="position()"></h1>
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="line">
<p>
<xslvalue-of select="@who"/>:
<xsl:apply-templates/>
</p>
</xsl:template>

24

11/20/2007

Partial XSLT Play-to-HTML Converter

<xsl:template match="exit">
<xsl:variable name="gone" select="@who" />
<p>Exit <xsl:value-of select="$gone"/>.</p>
<xsl:if test="not following::enter[@who = $gone]">
<p class="stage-direction">
<xsl:value-of select="$gone" />
may now leave the theatre.
</p>
</xsl:if>

</xsl:template>

25

If going to HTML, what was the point?

» Move between XML vocabularies (not just HTML)
Data exchange, conversion, mining, migration, etc.

» Rehearsal plans
Get list of unique characters appearing in each act
Cross-reference with names of actors for each role
Convert to OOXML or ODF (XML for word processing)
Print “call sheet” saying who needs to be at rehearsal

» Cookbook of just basil recipes
“Too Many Tomatoes: A Cookbook for When Your Garden
Explodes”

» Rewrite badly-designed web sites within the browser?

26

Why I'm Doing This Lecture

» My CurriculumVitae is an XML document
Automatically convert to HTML, PDF (via LaTeX), plain text
Automatically extract conflict-of-interest lists: everyone I've
written a paper with in the last five years
» My class schedules are XML documents
Generate meeting dates automatically
Generate HTML table for posting on class web page
Automatically extract calendar records for Google Calendar
» Much of my research data is stored as XML

XSLT transformations to HTML for rapid prototyping of
alternative ways to explore our results

27

11/20/2007

Buyer Beware: Some XML Caveats

» Syntax can be very verbose
<date><year>2007</year><month>1| | </month><date>20...
Lisp-like alternative: (date (year 2007) (month |1) (date 20))

» Too much design flexibility and little standardized policy
<date><year>2007</year><month>1| | </month><date>20...
<date>2007-11-20</date>
<date when="2007-11-20"/>

» Human-readable?

In theory, yes
In practice, sometimes not

28

Buyer Beware: Some XML Caveats

» Doesn’t work too well for arbitrary binary data
Need to encode using allowed subset of chars
<data base64="\VBORWOKGgoAAANSUhEUgAAAJAAA..."/>
» DTDs have limited expressive power, quirky syntax
Might need to allow “valid” documents you don’t really like
Popular alternatives: W3C Schema, RELAX NG
» XPath cannot do absolutely everything
XQuery: SQL for XML
Use XPath within more full-featured programming languages
» XSLT:worst programming syntax ever invented

Call it selectively from within standard programming languages

29

Summary of What We’ve Seen

» XML:generic syntax for tree-structured data
Well-formed XML must obey some simple rules

» DTD: define grammars for particular ways of using XML
Valid (or validated) XML documents obey some given DTD
Properly authored HTML is XML and obeys the HTML DTD

» XPath:data extraction based on path matching
Compact and usually easy to read
Limited expressive power; cannot solve every problem

» XSLT:domain-specific language for XML transformation
Systematically match input tree and generate output tree
Very powerful tool if your task fits its model

11/20/2007

10

