
11/20/2007

1

eXtensible Markup Language

CS 368 — Web Programming — Ben Liblit

Meet our Cast of Characters

 XML: eXtensible Markup Language

 Can add lightweight semantic info to plain text

 Can describe arbitrarily complex structured data

 Just data; doesn’t really do anything by itself

 DTD: Document Type Definition

 Structure of some XML format you plan to reuse

 One DTD ↔ many XML documents

 Just like HTML syntax ↔ many HTML pages

2

Meet our Cast of Characters

 XPath

 Compact syntax for grabbing fragments of XML data

 XSLT: eXtensible Stylesheet Language Transformations

 Programming language for transforming XML

 It does stuff!

 Arbitrary calculations, logic, conditional branches, etc.

 Uses XPath extensively

3

11/20/2007

2

Markup Languages

 Give structure and

meaning to plain text

 Lightweight overlay

 Erase and you’re back to

plain text

 Markup “vocabulary”

agreed-upon by users

 Writer & editor

 Web designer & browser

4

Markup Languages

 Give structure and

meaning to plain text

 Lightweight overlay

 Erase and you’re back to

plain text

 Markup “vocabulary”

agreed-upon by users

 Writer & editor

 Web designer & browser

Building a Better NetFlow
appeared in SIGCOMM

<cite>Building a Better
NetFlow</cite> appeared in
SIGCOMM

Building a Better NetFlow

appeared in SIGCOMM

5

Creating Your Own Markup Language

 HTML is one markup language

 Pretty good for describing web pages

 Vocabulary includes links, headings, paragraphs, images, etc.

 But what if that’s not the information you’re interested in?

 Mark ingredients in recipes so I can use up all of my basil

 Mark prices in catalogs so I can find a good deal

 Mark characters in a play so I know who needs to be on stage

 Mark dictionary words by rarity so I can build shorter editions

 Make up your own markup vocabulary!

 Apply whatever meaning you want, as long as everyone agrees

 XML: a generic syntax for custom markup languages

6

http://www.sigcomm.org/

11/20/2007

3

XML: Consistent Generic Syntax

 Elements (a.k.a. tags) in angle brackets

 <ingredient>basil</ingredient>

 Elements have optional attributes

 <word level="rare">…</word>

 No duplicate attribute names allowed!

 Abbreviated syntax for empty elements

 <sale reduction="10%"></sale>

 <sale reduction="10%" />

 (Optional space before closing slash has no meaning)

 Make up any element and tag names you want!

 Will this lead to complete chaos? Maybe, but DTDs will help…

7

XML: Consistent Generic Syntax

 Some special characters represented as escaped entities

 “<” and “>” become “<” and “>”

 “&” becomes “&”

 “” can optionally become “☺” or “&x263A;”

 Elements must be strictly nested and explicitly closed

 Think {of (elements) [(as)] nested, {matching} parentheses}

 Which of the following are well-formed XML?

1. <p>plain bold <i>bold italic plain? italic?</p>

2. <p>plain bold <i>bold italic</i> just bold again</p>

3. <p>plain bold <i>bold italic</i> <i>just italic</i></p>

 Exactly one top-level root element

8

XML: Consistent Generic Interpretation

 XML document is … a tree!

 Strict nesting determines parent/child relationships

 Elements are nodes

 Elements may have zero or more ordered children

 Runs of original text become leaf nodes

 Cannot have any children

 Attributes are extra info on elements

 Collection of (name: value) pairs

 Unordered, unlike child nodes

 No extra parsing or interpretation of attribute values

9

11/20/2007

4

XML: Consistent Generic Interpretation

<play

author=“Shakespeare">

<title>Julius Cæsar</title>

<act setting=“hall">

<line who="Brutus">

Hark!

</line>

<exit who="Brutus"/>

</act>

</play>

play

title

Julius Cæsar

act

line

Hark!

exeunt

(Slight fib: I have omitted

whitespace-only text

nodes, as is common.)

10

XML Beyond Text Markup

<recipe>

<ingredient id= "ingr_01"
count= "3" units="leaves">

Basil

</ingredient>

…

<instructions>

<mix>

<item ref=“ingr_01“ />

<item ref=“ingr_02“ />

</mix>

…

</recipe>

 Remember that idea

about erasing the markup

to recover plain text?

 What if we discard this?

 Use XML as a syntax for

any tree-structured data

 Or even non-tree data,

though a bit awkward

 Very popular data format

 Especially for web stuff

11

Total Markup Anarchy?

 You can make up any elements and attributes you want

 Can any element appear anywhere?

 Can any attribute appear on any element, with any value?

 Yes and no

 How carefully do you want to check your XML document?

 Well-formed XML

 Requires only proper syntax, nesting, entity escaping, etc.

 Sufficient to ensure you can construct an unambiguous tree

 Validated XML

 Document tree obeys extra rules about what appears where

 Rules provided by designer of markup vocabulary (e.g., you!)

12

11/20/2007

5

DTD: Document Type Definition

 Gives the general format of a family of XML documents

 What are the known element names?

 Which attributes can each element have?

 And what are the possible values?

 What children can each element have?

 And how many?

 And what order can they appear in?

 Validating XML parser checks tree against DTD

 Non-validating parser only checks for well-formed XML

 Cannot even try to validate a non-well-formed XML document

 Many parsers offer both validating and non-validating modes

13

Simplified Fragment of HTML DTD

<!ELEMENT html (head, body)>

<!ELEMENT body (h1 | h2 | h3 | p | table | ul | hr)*>

<!ELEMENT p (#PCDATA | a | img)*>

<!ATTLIST p style CDATA #IMPLIED>

<!ELEMENT img EMPTY>

<!ATTLIST img src CDATA #REQUIRED>

<!ELEMENT table (caption?, thead?, tfoot?, (tbody+ | tr+))>

14

DTD Element Properties

 Ordering of child nodes, if any are allowed

 Specific order: foo, bar, baz

 Mixed in any order: foo | bar | baz

 How many repetitions?

 Zero or one: foo?

 Zero or more: bar*

 One or more: baz+

 Special kinds of content: EMPTY, #PCDATA

 Marking up a Shakespearean play

 <!ELEMENT play (title, prologue?, act+, epilogue?)>

 <!ELEMENT act (line | enter | exit)+>

15

11/20/2007

6

DTD Attribute Properties

 Each element has a list of allowed attributes

 <!ATTLIST line

who IDREF #REQUIRED

mood (happy | sad | neutral) #IMPLIED>

 Each attribute has name, type, and default value

 Types include CDATA, NMTOKEN, ID, IDREF, enum, …

 Pretty limited, actually; cannot even require a valid number

 Default value

 value

 #REQUIRED

 #IMPLIED

 #FIXED value

16

OK, I built my XML tree. Now what?

 A data definition language

is only useful if you can

get data back out of it

 Use tree paths to describe

the data you want

 /play

 /play/title

 /play/act/line

 (Which line?)

 Welcome to XPath!

play

title

Julius Cæsar

act

line

Hark!

exeunt

17

XPath: XML Data Extraction Patterns

 Paths are slash-delimited, each level naming an element

 /play/title

 /html/body/table/tr/td

 tr/td/p

 ../act/enter

 Wildcards

 * matches any one node: /play/*/line

 // matches zero or more nodes: /html/body//table//a/*/img

 Attributes available at the leaves using @name

 /recipe/ingredient/@units

 //@lang

18

11/20/2007

7

Being More Selective

 If pattern matches multiple parts of tree, get all of them

 /play/act/line: every line in every act, in document order

 But what if you only want some of them?

 Restrictions in square brackets anywhere along the path

 /play/act/line[@who = "Brutus"]

 XPath functions give more info about current node

 /play/act[position() = 2]/line[text() = "Hark!"]/@who

 Special syntax simplifies some common cases

 Number is treated as position check: /play/act[3]/line[last()]

 Node set matches if non-empty: /play[epilogue]/title

19

XPath Can Get Pretty Fancy

 Text of the last line in the play

 /play//line[not preceding::line]/text()

 Schools that the Badgers played against

 /scores/game[team = "Badgers"]/team[. != "Badgers"]

 Extract TV listing from HTML page (screen-scraping)

 //div[@class = "times"]//dt[text() = "Scrubs"]/../ul/li[2]

 However, it’s still just a one-time query

 Good start, but not enough for complex data transformations

20

XSLT: XML Transformation Language

 XSLT is a fully general programming language

 Highly specialized for transforming XML into XML

 Why would you want to do this?

 To generate HTML pages from other structured data

 To convert data in one structured format into another format

 To extract data using more powerful tools than XPath

 So why did we bother with XPath?

 XSLT uses XPath extensively to match and extract data

 Think of XSLT as an XPath-based XML reorganizer

21

11/20/2007

8

General Style of an XSLT Script

 XSLT script is a collection of templates

 Each template has an XPath pattern + commands to run

 Use XPath pattern to match fragments of XML document tree

 When a template matches, run the commands

 If no match, default behavior kicks in

1. Default for text nodes: copy text to result tree

2. Default for element nodes: recursively descend

 Start by matching document root, “/”

 Might match an XSLT template, or might recursively descend

22

Warning! Amazingly ugly syntax ahead!

 What syntax should XSLT programming language use?

 Curly braces and semicolons like Java, C, C++, C#, JavaScript?

 Nested parentheses like Lisp?

 Whitespace-delimited commands like Unix shells?

 Of course not. Don’t be silly.

 XSLT programs are structured, and we already have a

perfectly good (?) syntax for structured data

 XSLT is represented using … XML!

 <xsl:if test="…">…</xsl:if>

 <xsl:for-each select="…">…</xsl:for-each>

 <xsl:variable name="inches" select="@cm / 2.54" />

23

Partial XSLT Play-to-HTML Converter

<xsl:template match="act">

<h1>Act <xsl:value-of select="position()"></h1>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="line">

<p>

<xsl:value-of select="@who"/>:

<xsl:apply-templates/>

</p>

</xsl:template>

24

11/20/2007

9

Partial XSLT Play-to-HTML Converter

<xsl:template match="exit">

<xsl:variable name=“gone" select="@who" />

<p>Exit <xsl:value-of select="$gone"/>.</p>

<xsl:if test="not following::enter[@who = $gone]">

<p class="stage-direction">

<xsl:value-of select="$gone" />

may now leave the theatre.

</p>

</xsl:if>

</xsl:template>

25

If going to HTML, what was the point?

 Move between XML vocabularies (not just HTML)

 Data exchange, conversion, mining, migration, etc.

 Rehearsal plans

 Get list of unique characters appearing in each act

 Cross-reference with names of actors for each role

 Convert to OOXML or ODF (XML for word processing)

 Print “call sheet” saying who needs to be at rehearsal

 Cookbook of just basil recipes

 “Too Many Tomatoes: A Cookbook for When Your Garden

Explodes”

 Rewrite badly-designed web sites within the browser?

26

Why I’m Doing This Lecture

 My Curriculum Vitae is an XML document

 Automatically convert to HTML, PDF (via LaTeX), plain text

 Automatically extract conflict-of-interest lists: everyone I’ve

written a paper with in the last five years

 My class schedules are XML documents

 Generate meeting dates automatically

 Generate HTML table for posting on class web page

 Automatically extract calendar records for Google Calendar

 Much of my research data is stored as XML

 XSLT transformations to HTML for rapid prototyping of

alternative ways to explore our results

27

11/20/2007

10

Buyer Beware: Some XML Caveats

 Syntax can be very verbose

 <date><year>2007</year><month>11</month><date>20…

 Lisp-like alternative: (date (year 2007) (month 11) (date 20))

 Too much design flexibility and little standardized policy

 <date><year>2007</year><month>11</month><date>20…

 <date>2007-11-20</date>

 <date when="2007-11-20"/>

 Human-readable?

 In theory, yes

 In practice, sometimes not

28

Buyer Beware: Some XML Caveats

 Doesn’t work too well for arbitrary binary data

 Need to encode using allowed subset of chars

 <data base64="iVBORw0KGgoAAANSUhEUgAAAJAAA…"/>

 DTDs have limited expressive power, quirky syntax

 Might need to allow “valid” documents you don’t really like

 Popular alternatives: W3C Schema, RELAX NG

 XPath cannot do absolutely everything

 XQuery: SQL for XML

 Use XPath within more full-featured programming languages

 XSLT: worst programming syntax ever invented

 Call it selectively from within standard programming languages

29

Summary of What We’ve Seen

 XML: generic syntax for tree-structured data

 Well-formed XML must obey some simple rules

 DTD: define grammars for particular ways of using XML

 Valid (or validated) XML documents obey some given DTD

 Properly authored HTML is XML and obeys the HTML DTD

 XPath: data extraction based on path matching

 Compact and usually easy to read

 Limited expressive power; cannot solve every problem

 XSLT: domain-specific language for XML transformation

 Systematically match input tree and generate output tree

 Very powerful tool if your task fits its model

30

